34 research outputs found

    Improving the performance of adaptive optics systems with optimized control methods

    Get PDF
    This thesis investigates control aspects of adaptive optics (AO), a technology to compensate the rapidly changing distortions that affect light after propagating through the turbulent atmosphere. In particular, two different astronomical applications are considered: partial correction of wide fields (needed for surveys) and high accuracy correction of very small fields (needed for detecting faint companions, like exoplanets). The performance of typical current and future AO systems has been analyzed through numerical simulations, and methods to improve their performance have been studied. In the first part of the thesis, an optimum compensation of wide fields has been shown to be achievable by traditional control methods. The latter part of the thesis concentrates on the nonlinearity issues of a pyramid wavefront sensor (P-WFS) shown in earlier works to be a promising choice for the accurate small field compensation (extreme adaptive optics) due to its better sensitivity for low frequency wavefront distortions. Two novel methods to deal with the P-WFS nonlinearity effects are presented in this thesis. The first is a theoretical model based and computationally intensive method based on directly inverting the P-WFS signal model. The second method is a heuristic, computationally efficient method combining the a priori information of the atmosphere, the P-WFS signal model and experimentally obtained interaction matrices describing the system behavior. It is shown in simulations that the latter method, based on compensating the P-WFS loss of sensitivity, dramatically improves the system performance (compared to the conventional AO system control and wavefront reconstruction) in conditions where the measured wavefront aberrations are large (bad seeing and short sensing wavelengths)

    Extremely fast focal-plane wavefront sensing for extreme adaptive optics

    Full text link
    We present a promising approach to the extremely fast sensing and correction of small wavefront errors in adaptive optics systems. As our algorithm's computational complexity is roughly proportional to the number of actuators, it is particularly suitable to systems with 10,000 to 100,000 actuators. Our approach is based on sequential phase diversity and simple relations between the point-spread function and the wavefront error in the case of small aberrations. The particular choice of phase diversity, introduced by the deformable mirror itself, minimizes the wavefront error as well as the computational complexity. The method is well suited for high-contrast astronomical imaging of point sources such as the direct detection and characterization of exoplanets around stars, and it works even in the presence of a coronagraph that suppresses the diffraction pattern. The accompanying paper in these proceedings by Korkiakoski et al. describes the performance of the algorithm using numerical simulations and laboratory tests.Comment: SPIE Paper 8447-7

    Focal-plane wavefront sensing with high-order adaptive optics systems

    Full text link
    We investigate methods to calibrate the non-common path aberrations at an adaptive optics system having a wavefront-correcting device working at an extremely high resolution (larger than 150x150). We use focal-plane images collected successively, the corresponding phase-diversity information and numerically efficient algorithms to calculate the required wavefront updates. The wavefront correction is applied iteratively until the algorithms converge. Different approaches are studied. In addition of the standard Gerchberg-Saxton algorithm, we test the extension of the Fast & Furious algorithm that uses three images and creates an estimate of the pupil amplitudes. We also test recently proposed phase-retrieval methods based on convex optimisation. The results indicate that in the framework we consider, the calibration task is easiest with algorithms similar to the Fast & Furious.Comment: 11 pages, 7 figures, published in SPIE proceeding

    The coronagraphic Modal Wavefront Sensor: a hybrid focal-plane sensor for the high-contrast imaging of circumstellar environments

    Get PDF
    The raw coronagraphic performance of current high-contrast imaging instruments is limited by the presence of a quasi-static speckle (QSS) background, resulting from instrumental non-common path errors (NCPEs). Rapid development of efficient speckle subtraction techniques in data reduction has enabled final contrasts of up to 10-6 to be obtained, however it remains preferable to eliminate the underlying NCPEs at the source. In this work we introduce the coronagraphic Modal Wavefront Sensor (cMWS), a new wavefront sensor suitable for real-time NCPE correction. This pupil-plane optic combines the apodizing phase plate coronagraph with a holographic modal wavefront sensor, to provide simultaneous coronagraphic imaging and focal-plane wavefront sensing using the science point spread function. We first characterise the baseline performance of the cMWS via idealised closed-loop simulations, showing that the sensor successfully recovers diffraction-limited coronagraph performance over an effective dynamic range of +/-2.5 radians root-mean-square (RMS) wavefront error within 2-10 iterations. We then present the results of initial on-sky testing at the William Herschel Telescope, and demonstrate that the sensor is able to retrieve injected wavefront aberrations to an accuracy of 10nm RMS under realistic seeing conditions. We also find that the cMWS is capable of real-time broadband measurement of atmospheric wavefront variance at a cadence of 50Hz across an uncorrected telescope sub-aperture. When combined with a suitable closed-loop adaptive optics system, the cMWS holds the potential to deliver an improvement in raw contrast of up to two orders of magnitude over the uncorrected QSS floor. Such a sensor would be eminently suitable for the direct imaging and spectroscopy of exoplanets with both existing and future instruments, including EPICS and METIS for the E-ELT.Comment: 14 pages, 12 figures: accepted for publication in Astronomy & Astrophysic

    Calibrating a high-resolution wavefront corrector with a static focal-plane camera

    Full text link
    We present a method to calibrate a high-resolution wavefront-correcting device with a single, static camera, located in the focal plane; no moving of any component is needed. The method is based on a localized diversity and differential optical transfer functions (dOTF) to compute both the phase and amplitude in the pupil plane located upstream of the last imaging optics. An experiment with a spatial light modulator shows that the calibration is sufficient to robustly operate a focal-plane wavefront sensing algorithm controlling a wavefront corrector with ~40 000 degrees of freedom. We estimate that the locations of identical wavefront corrector elements are determined with a spatial resolution of 0.3% compared to the pupil diameter.Comment: 12 pages, 12 figures, accepted for publication in Applied Optic

    Single detector stereo-SCIDAR for Mount Stromlo

    Get PDF
    Satellite tracking and imaging is conducted by the ANU Research School of Astronomy and Astrophysics and Electro-Optic Systems (EOS) at Mount Stromlo Observatory, Canberra, Australia, as part of the Space Environment Management Cooperative Research Centre (SERC) to support the development in space situational awareness. Atmospheric turbulence leads to distortions in the measured data. Adaptive optics (AO) systems counteract those distortions and improve the resolution of the tracking and imaging systems. To assist in the design of the AO systems, we need to gather information on the atmosphere at Mount Stromlo: r0, Ï„ 0, and the turbulence Cn2 profile. With the SCIntillation Detection And Ranging (SCIDAR) Technique the scintillation of two stars is measured and their autocorrelation function is computed, providing a measurement of the turbulence profile. This technique usually uses one detector recording the two images of the stars simultaneously. However, the images overlap leading to an underestimation of the Cn2 values. The introduction of stereo-SCIDAR1 over- comes this issue by separating the two stars and imaging them on two separate image sensors. To reduce costs, we introduce a new stereo-SCIDAR system separating the beams from the two stars, but using only one single detector. This has been shown for a Low Layer SCIDAR (LOLAS) system with wide double stars (200 arcsec). We investigate this technique by detecting the scintillation patterns of double stars with separation from 10 to 25 arcsec, allowing some flexibility in the altitude span and resolution, while retaining a simple optical setup. We selected a low noise sCMOS camera as the imager. We show the current design of this system and investigate its feasibility for further development

    Calibrating a high-resolution wavefront corrector with a static focal-plane camera

    Get PDF
    We present a method to calibrate a high-resolution wavefront (WF)-correcting device with a single, static camera, located in the focal-plane; no moving of any component is needed. The method is based on a localized diversity and differential optical transfer functions to compute both the phase and amplitude in the pupil plane located upstream of the last imaging optics. An experiment with a spatial light modulator shows that the calibration is sufficient to robustly operate a focal-plane WF sensing algorithm controlling a WF corrector with 40,000 degrees of freedom. We estimate that the locations of identical WF corrector elements are determined with a spatial resolution of 0.3% compared to the pupil diameter

    Fast & Furious focal-plane wavefront sensing

    Get PDF
    We present two complementary algorithms suitable for using focal-plane measurements to control a wavefront corrector with an extremely high-spatial resolution. The algorithms use linear approximations to iteratively minimize the aberrations seen by the focal-plane camera. The first algorithm, Fast & Furious (FF), uses a weak-aberration assumption and pupil symmetries to achieve fast wavefront reconstruction. The second algorithm, an extension to FF, can deal with an arbitrary pupil shape; it uses a Gerchberg–Saxton (GS)-style error reduction to determine the pupil amplitudes. Simulations and experimental results are shown for a spatial-light modulator controlling the wavefront with a resolution of 170×170  pixels. The algorithms increase the Strehl ratio from ∼0.75 to 0.98–0.99, and the intensity of the scattered light is reduced throughout the whole recorded image of 320×320  pixels. The remaining wavefront rms error is estimated to be ∼0.15  rad with FF and ∼0.10  rad with FF-GS

    The coronagraphic Modal Wavefront Sensor: a hybrid focal-plane sensor for the high-contrast imaging of circumstellar environments

    Get PDF
    The raw coronagraphic performance of current high-contrast imaging instruments is limited by the presence of a quasi-static speckle (QSS) background, resulting from instrumental Non-Common Path Errors (NCPEs). Rapid development of efficient speckle subtraction techniques in data reduction has enabled final contrasts of up to 10-6 to be obtained, however it remains preferable to eliminate the underlying NCPEs at the source. In this work we introduce the coronagraphic Modal Wavefront Sensor (cMWS), a new wavefront sensor suitable for real-time NCPE correction. This combines the Apodizing Phase Plate (APP) coronagraph with a holographic modal wavefront sensor to provide simultaneous coronagraphic imaging and focal-plane wavefront sensing with the science point-spread function. We first characterise the baseline performance of the cMWS via idealised closed-loop simulations, showing that the sensor is able to successfully recover diffraction-limited coronagraph performance over an effective dynamic range of ±2.5 radians root-mean-square (rms) wavefront error within 2–10 iterations, with performance independent of the specific choice of mode basis. We then present the results of initial on-sky testing at the William Herschel Telescope, which demonstrate that the sensor is capable of NCPE sensing under realistic seeing conditions via the recovery of known static aberrations to an accuracy of 10 nm (0.1 radians) rms error in the presence of a dominant atmospheric speckle foreground. We also find that the sensor is capable of real-time measurement of broadband atmospheric wavefront variance (50% bandwidth, 158 nm rms wavefront error) at a cadence of 50 Hz over an uncorrected telescope sub-aperture. When combined with a suitable closed-loop adaptive optics system, the cMWS holds the potential to deliver an improvement of up to two orders of magnitude over the uncorrected QSS floor. Such a sensor would be eminently suitable for the direct imaging and spectroscopy of exoplanets with both existing and future instruments, including EPICS and METIS for the E-ELTThis research is funded by the Nederlandse Onderzoekschool Voor Astronomie (NOVA)
    corecore